69 research outputs found

    A Note on Outer-Independent 2-Rainbow Domination in Graphs

    Get PDF
    Let G be a graph with vertex set V(G) and f:V(G)→{∅,{1},{2},{1,2}} be a function. We say that f is an outer-independent 2-rainbow dominating function on G if the following two conditions hold: (i)V∅={x∈V(G):f(x)=∅} is an independent set of G. (ii)∪u∈N(v)f(u)={1,2} for every vertex v∈V∅. The outer-independent 2-rainbow domination number of G, denoted by γoir2(G), is the minimum weight ω(f)=∑x∈V(G)|f(x)| among all outer-independent 2-rainbow dominating functions f on G. In this note, we obtain new results on the previous domination parameter. Some of our results are tight bounds which improve the well-known bounds β(G)≤γoir2(G)≤2β(G), where β(G) denotes the vertex cover number of G. Finally, we study the outer-independent 2-rainbow domination number of the join, lexicographic, and corona product graphs. In particular, we show that, for these three product graphs, the parameter achieves equality in the lower bound of the previous inequality chain

    Total protection in graphs

    Get PDF
    Suposem que una o diverses entitats estan situades en alguns dels vèrtexs d'un graf simple, i que una entitat situada en un vèrtex es pot ocupar d'un problema en qualsevol vèrtex del seu entorn tancat. En general, una entitat pot consistir en un robot, un observador, una legió, un guàrdia, etc. Informalment, diem que un graf està protegit sota una determinada ubicació d'entitats si hi ha almenys una entitat disponible per tractar un problema en qualsevol vèrtex. S'han considerat diverses estratègies (o regles d'ubicació d'entitats), sota cadascuna de les quals el graf es considera protegit. Aquestes estratègies de protecció de grafs s'emmarquen en la teoria de la dominació en grafs, o en la teoria de la dominació segura en grafs. En aquesta tesi, introduïm l'estudi de la w-dominació (segura) en grafs, el qual és un enfocament unificat a la idea de protecció de grafs, i que engloba variants conegudes de dominació (segura) en grafs i introdueix de noves. La tesi està estructurada com un compendi de deu articles, els quals han estat publicats en revistes indexades en el JCR. El primer està dedicat a l'estudi de la w-dominació, el cinquè a l'estudi de la w-dominació segura, mentre que els altres treballs estan dedicats a casos particulars d'estratègies de protecció total. Com és d'esperar, el nombre mínim d'entitats necessàries per a la protecció sota cada estratègia és d'interès. En general, s'obtenen fórmules tancades o fites ajustades sobre els paràmetres estudiats.Supongamos que una o varias entidades están situadas en algunos de los vértices de un grafo simple y que una entidad situada en un vértice puede ocuparse de un problema en cualquier vértice de su vecindad cerrada. En general, una entidad puede consistir en un robot, un observador, una legión, un guardia, etc. Informalmente, decimos que un grafo está protegido bajo una determinada ubicación de entidades si existe al menos una entidad disponible para tratar un problema en cualquier vértice. Se han considerado varias estrategias (o reglas de ubicación de entidades), bajo cada una de las cuales el grafo se considera protegido. Estas estrategias de protección de grafos se enmarcan en la teoría de la dominación en grafos, o en la teoría de la dominación segura en grafos. En esta tesis, introducimos el estudio de la w-dominación (segura) en grafos, el cual es un enfoque unificado a la idea de protección de grafos, y que engloba variantes conocidas de dominación (segura) en grafos e introduce otras nuevas. La tesis está estructurada como un compendio de diez artículos, los cuales han sido publicados en revistas indexadas en el JCR. El primero está dedicado al estudio de la w-dominación, el quinto al estudio de la w-dominación segura, mientras que los demás trabajos están dedicados a casos particulares de estrategias de protección total. Como es de esperar, el número mínimo de entidades necesarias para la protección bajo cada estrategia es de interés. En general, se obtienen fórmulas cerradas o cotas ajustadas sobre los parámetros estudiadosSuppose that one or more entities are stationed at some of the vertices of a simple graph and that an entity at a vertex can deal with a problem at any vertex in its closed neighbourhood. In general, an entity could consist of a robot, an observer, a legion, a guard, and so on. Informally, we say that a graph is protected under a given placement of entities if there exists at least one entity available to handle a problem at any vertex. Various strategies (or rules for entities placements) have been considered, under each of which the graph is deemed protected. These strategies for the protection of graphs are framed within the theory of domination in graphs, or in the theory of secure domination in graphs. In this thesis, we introduce the study of (secure) w-domination in graphs, which is a unified approach to the idea of protection of graphs, that encompasses known variants of (secure) domination in graphs and introduces new ones. The thesis is structured as a compendium of ten papers which have been published in JCR-indexed journals. The first one is devoted to the study of w-domination, the fifth one is devoted to the study of secure w-domination, while the other papers are devoted to particular cases of total protection strategies. As we can expect, the minimum number of entities required for protection under each strategy is of interest. In general, we obtain closed formulas or tight bounds on the studied parameters

    On the {2}-domination number of graphs

    Full text link
    [EN] Let G be a nontrivial graph and k ¿ 1 an integer. Given a vector of nonnegative integers w = (w0,...,wk), a function f : V(G) ¿ {0,..., k} is a w-dominating function on G if f(N(v)) ¿ wi for every v ¿ V(G) such that f(v) = i. The w-domination number of G, denoted by ¿w(G), is the minimum weight ¿(f) = ¿v¿V(G) f(v) among all w-dominating functions on G. In particular, the {2}- domination number of a graph G is defined as ¿{2} (G) = ¿(2,1,0) (G). In this paper we continue with the study of the {2}-domination number of graphs. In particular, we obtain new tight bounds on this parameter and provide closed formulas for some specific families of graphs.Cabrera-Martínez, A.; Conchado Peiró, A. (2022). On the {2}-domination number of graphs. AIMS Mathematics. 7(6):10731-10743. https://doi.org/10.3934/math.202259910731107437

    Quasi-total Roman Domination in Graphs

    Full text link
    [EN] A quasi-total Roman dominating function on a graph G=(V,E) is a function f:V ->{0,1,2}satisfying the following: Every vertex for which u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2, and If x is an isolated vertex in the subgraph induced by the set of vertices labeled with 1 and 2, then f(x) = 1. The weight of a quasi-total Roman dominating function is the value omega(f) = f(V) = Sigma(u is an element of V) f(u). The minimum weight of a quasi-total Roman dominating function on a graph G is called the quasi-total Roman domination number of G. We introduce the quasi-total Roman domination number of graphs in this article, and begin the study of its combinatorial and computational properties.Cabrera García, S.; Cabrera Martínez, A.; Yero, IG. (2019). Quasi-total Roman Domination in Graphs. Results in Mathematics. 74(4):1-18. https://doi.org/10.1007/s00025-019-1097-5S11874

    Further Results on the Total Roman Domination in Graphs

    Full text link
    [EN] Let G be a graph without isolated vertices. A function f:V(G)-> {0,1,2} is a total Roman dominating function on G if every vertex v is an element of V(G) for which f(v)=0 is adjacent to at least one vertex u is an element of V(G) such that f(u)=2 , and if the subgraph induced by the set {v is an element of V(G):f(v)>= 1} has no isolated vertices. The total Roman domination number of G, denoted gamma tR(G) , is the minimum weight omega (f)=Sigma v is an element of V(G)f(v) among all total Roman dominating functions f on G. In this article we obtain new tight lower and upper bounds for gamma tR(G) which improve the well-known bounds 2 gamma (G)<= gamma tR(G)<= 3 gamma (G) , where gamma (G) represents the classical domination number. In addition, we characterize the graphs that achieve equality in the previous lower bound and we give necessary conditions for the graphs which satisfy the equality in the upper bound above.Cabrera Martínez, A.; Cabrera García, S.; Carrión García, A. (2020). Further Results on the Total Roman Domination in Graphs. Mathematics. 8(3):1-8. https://doi.org/10.3390/math8030349S1883Henning, M. A. (2009). A survey of selected recent results on total domination in graphs. Discrete Mathematics, 309(1), 32-63. doi:10.1016/j.disc.2007.12.044Henning, M. A., & Yeo, A. (2013). Total Domination in Graphs. Springer Monographs in Mathematics. doi:10.1007/978-1-4614-6525-6Henning, M. A., & Marcon, A. J. (2016). Semitotal Domination in Claw-Free Cubic Graphs. Annals of Combinatorics, 20(4), 799-813. doi:10.1007/s00026-016-0331-zHenning, M. . A., & Marcon, A. J. (2016). Vertices contained in all or in no minimum semitotal dominating set of a tree. Discussiones Mathematicae Graph Theory, 36(1), 71. doi:10.7151/dmgt.1844Henning, M. A., & Pandey, A. (2019). Algorithmic aspects of semitotal domination in graphs. Theoretical Computer Science, 766, 46-57. doi:10.1016/j.tcs.2018.09.019Cockayne, E. J., Dreyer, P. A., Hedetniemi, S. M., & Hedetniemi, S. T. (2004). Roman domination in graphs. Discrete Mathematics, 278(1-3), 11-22. doi:10.1016/j.disc.2003.06.004Stewart, I. (1999). Defend the Roman Empire! Scientific American, 281(6), 136-138. doi:10.1038/scientificamerican1299-136Chambers, E. W., Kinnersley, B., Prince, N., & West, D. B. (2009). Extremal Problems for Roman Domination. SIAM Journal on Discrete Mathematics, 23(3), 1575-1586. doi:10.1137/070699688Favaron, O., Karami, H., Khoeilar, R., & Sheikholeslami, S. M. (2009). On the Roman domination number of a graph. Discrete Mathematics, 309(10), 3447-3451. doi:10.1016/j.disc.2008.09.043Liu, C.-H., & Chang, G. J. (2012). Upper bounds on Roman domination numbers of graphs. Discrete Mathematics, 312(7), 1386-1391. doi:10.1016/j.disc.2011.12.021González, Y., & Rodríguez-Velázquez, J. (2013). Roman domination in Cartesian product graphs and strong product graphs. Applicable Analysis and Discrete Mathematics, 7(2), 262-274. doi:10.2298/aadm130813017gLiu, C.-H., & Chang, G. J. (2012). Roman domination on strongly chordal graphs. Journal of Combinatorial Optimization, 26(3), 608-619. doi:10.1007/s10878-012-9482-yAhangar Abdollahzadeh, H., Henning, M., Samodivkin, V., & Yero, I. (2016). Total Roman domination in graphs. Applicable Analysis and Discrete Mathematics, 10(2), 501-517. doi:10.2298/aadm160802017aAmjadi, J., Sheikholeslami, S. M., & Soroudi, M. (2019). On the total Roman domination in trees. Discussiones Mathematicae Graph Theory, 39(2), 519. doi:10.7151/dmgt.2099Cabrera Martínez, A., Montejano, L. P., & Rodríguez-Velázquez, J. A. (2019). Total Weak Roman Domination in Graphs. Symmetry, 11(6), 831. doi:10.3390/sym1106083

    Roman domination in direct product graphs and rooted product graphs1

    Get PDF
    Let G be a graph with vertex set V(G). A function f : V(G) -> {0, 1, 2) is a Roman dominating function on G if every vertex v is an element of V(G) for which f(v) = 0 is adjacent to at least one vertex u is an element of V(G) such that f(u) = 2. The Roman domination number of G is the minimum weight omega(f) = Sigma(x is an element of V(G)) f(x) among all Roman dominating functions f on G. In this article we study the Roman domination number of direct product graphs and rooted product graphs. Specifically, we give several tight lower and upper bounds for the Roman domination number of direct product graphs involving some parameters of the factors, which include the domination, (total) Roman domination, and packing numbers among others. On the other hand, we prove that the Roman domination number of rooted product graphs can attain only three possible values, which depend on the order, the domination number, and the Roman domination number of the factors in the product. In addition, theoretical characterizations of the classes of rooted product graphs achieving each of these three possible values are given.The second author (Iztok Peterin) has been partially supported by the Slovenian Research Agency by the projects No. J1-1693 and J1-9109. The last author (Ismael G. Yero) has been partially supported by "Junta de Andalucia", FEDER-UPO Research and Development Call, reference number UPO1263769

    A constructive characterization of vertex cover Roman trees

    Get PDF
    A Roman dominating function on a graph G = (V (G), E (G)) is a function f : V (G) -> {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The Roman dominating function f is an outer-independent Roman dominating function on G if the set of vertices labeled with zero under f is an independent set. The outer-independent Roman domination number gamma(oiR) (G) is the minimum weight w(f ) = Sigma(v is an element of V), ((G)) f(v) of any outer-independent Roman dominating function f of G. A vertex cover of a graph G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex cover is denoted by alpha(G). A graph G is a vertex cover Roman graph if gamma(oiR) (G) = 2 alpha(G). A constructive characterization of the vertex cover Roman trees is given in this article

    Independent transversal total domination versus total domination in trees

    Get PDF
    A subset of vertices in a graph G is a total dominating set if every vertex in G is adjacent to at least one vertex in this subset. The total domination number of G is the minimum cardinality of any total dominating set in G and is denoted by gamma(t)(G). A total dominating set of G having nonempty intersection with all the independent sets of maximum cardinality in G is an independent transversal total dominating set. The minimum cardinality of any independent transversal total dominating set is denoted by gamma(u) (G). Based on the fact that for any tree T, gamma(t) (T) <= gamma(u) (T) <= gamma(t) (T) + 1, in this work we give several relationship(s) between gamma(u) (T) and gamma(t) (T) for trees T which are leading to classify the trees which are satisfying the equality in these bound

    Relating the Outer-Independent Total Roman Domination Number with Some Classical Parameters of Graphs

    Get PDF
    For a given graph G without isolated vertex we consider a function f : V (G) -> {0,1, 2}. For every i is an element of {0,1, 2}, let V-i = {v is an element of V (G) : f (v) = i}. The function f is known to be an outer-independent total Roman dominating function for the graph G if it is satisfied that; (i) every vertex in V-0 is adjacent to at least one vertex in V-2; (ii) V-0 is an independent set; and (iii) the subgraph induced by V-1 boolean OR V-2 has no isolated vertex. The minimum possible weight omega(f) = Sigma(v is an element of V(G)) f(v) among all outer-independent total Roman dominating functions for G is called the outer-independent total Roman domination number of G. In this article we obtain new tight bounds for this parameter that improve some well-known results. Such bounds can also be seen as relationships between this parameter and several other classical parameters in graph theory like the domination, total domination, Roman domination, independence, and vertex cover numbers. In addition, we compute the outer-independent total Roman domination number of Sierpinski graphs, circulant graphs, and the Cartesian and direct products of complete graphs

    Dominating the Direct Product of Two Graphs through Total Roman Strategies

    Get PDF
    Given a graphGwithout isolated vertices, a total Roman dominating function forGis a function f:V(G)->{0,1,2}such that every vertexuwithf(u)=0is adjacent to a vertexvwithf(v)=2, and the set of vertices with positive labels induces a graph of minimum degree at least one. The total Roman domination number gamma tR(G)ofGis the smallest possible value of n-ary sumation v is an element of V(G)f(v)among all total Roman dominating functionsf. The total Roman domination number of the direct productGxHof the graphsGandHis studied in this work. Specifically, several relationships, in the shape of upper and lower bounds, between gamma tR(GxH)and some classical domination parameters for the factors are given. Characterizations of the direct product graphsGxHachieving small values (<= 7) for gamma tR(GxH)are presented, and exact values for gamma tR(GxH)are deduced, while considering various specific direct product classes
    • …
    corecore